High-Fidelity Numerical Investigation on Elucidating Sodium Heat Transfer Characteristics for 37-Pin Wire-Wrapped Fuel Bundle in the PLANDTL Facility

Author:

Choi Giuk12ORCID,Yoon Sujong2ORCID,Song Minseop23ORCID,Jeong Jae-Ho1ORCID

Affiliation:

1. Department of Mechanical Engineering, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea

2. Idaho National Laboratory, 2525 Fremont Avenue, Idaho Falls, ID 83415-6188, USA

3. Department of Nuclear Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea

Abstract

This study involved a Reynolds-averaged Navier-Stokes- (RANS-) based computational fluid dynamics (CFD) analysis of the 37-pin wire-wrapped fuel bundle of the PNC Plant dynamics test loop (PLANDTL) facility. Previously, mainly the hydrodynamic phenomena of the wire-wrapped fuel bundle were analyzed, but the present study additionally included heat transfer analysis through conjugate heat transfer. The main purpose of the study was to benchmark the experimental data of the PLANDTL 37-pin wire-wrapped fuel bundle to investigate the heat transfer phenomena. In addition, the aim was to verify the accuracy of the RANS-based CFD analysis method using the STAR-CCM+ simulation software in comparison with the experimental data. The grid used for verification was an innovative grid system consisting of hexahedra using Fortran-based code. The development of the RANS-based CFD methodology included grid sensitivity analysis, turbulence model sensitivity analysis, and turbulent Prandtl number sensitivity analysis. Information on the temperature, mass flow rate, and area of the CFD results for each subchannel was provided for the top of the heated section and is expected to serve as a reference for future studies aiming to perform the validation and verification of a PLANDTL facility. In addition, the dependence of the peak temperature on the azimuth angle of each pin was analyzed.

Funder

Office of Nuclear Energy

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3