PTS-FNN-Based Health Prediction Method for Flexible Photoelectric Film Material Processing Equipment

Author:

Deng Yaohua1ORCID,Yao Kexing1ORCID,Jin Tuo2ORCID,Feng Zhaoxi1ORCID,Liu Xiali1ORCID

Affiliation:

1. School of Electro-mechanical Engineering, Guangdong University of Technology, Guangzhou, Guangdong, China

2. Zhejiang Tobacco Company Wenzhou Company, Wenzhou, Zhejiang, China

Abstract

Roll-to-Roll (R2R) processing is a common processing method for flexible photoelectric film materials. Due to the physical properties of the materials, the change in the performance of the R2R processing equipment can easily cause deformation of the flexible film material, it is particularly important to predict the performance degradation of the processing equipment. Based on the accuracy and real-time requirements of performance degradation prediction, a PTS-FNN model for performance degradation prediction was proposed in this paper, which combines the Possibilistic C-Means (PCM) fuzzy clustering and Takagi–Sugeno Fuzzy Neural Network (TS-FNN). We also studied the PCM classification algorithm of input data of PTS-FNN model, the predecessor network of TS-FNN prediction model and the construction method of post-component network. Finally, the implementation process of PCM classification algorithm and TS-FNN prediction model were given. The R2R processing equipment health prediction experiment system was built and the PTS-FNN model experiment was carried out. The experimental results showed that the training time of PTS-FNN model was 50.37% less than the standard TS-FNN prediction model. The prediction accuracy increased by 5.48%, and the PTS-FNN had no error in the judgment of state 1 and state 4.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3