Modified Robust Ridge M-Estimators in Two-Parameter Ridge Regression Model

Author:

Yasin Seyab12,Salem Sultan3ORCID,Ayed Hamdi4ORCID,Kamal Shahid5,Suhail Muhammad6ORCID,Khan Yousaf Ali78ORCID

Affiliation:

1. College of Statistical & Actuarial Sciences (CSAS), University of the Punjab, Lahore, Pakistan

2. Department of Economics and Statistics, University of Management and Technology, Lahore, Pakistan

3. Department of Economics, University House, Birmingham Business School, Edgbaston Park Road, College of Social Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

4. Department of Civil Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia

5. Government College University Faisalabad, Faisalabad, Pakistan

6. Department of Statistics, The University of Agriculture Peshawar, AMK Campus, Mardan, Pakistan

7. Department of Mathematics and Statistics, Hazara University, Mansehra 23010, Pakistan

8. School of Statistics, Jiangxi University of Finance and Economics, Nanchang, China

Abstract

The methods of two-parameter ridge and ordinary ridge regression are very sensitive to the presence of the joint problem of multicollinearity and outliers in the y-direction. To overcome this problem, modified robust ridge M-estimators are proposed. The new estimators are then compared with the existing ones by means of extensive Monte Carlo simulations. According to mean squared error (MSE) criterion, the new estimators outperform the least square estimator, ridge regression estimator, and two-parameter ridge estimator in many considered scenarios. Two numerical examples are also presented to illustrate the simulation results.

Funder

Deanship of Scientific Research, King Saud University

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3