The Effect of Humidity and Temperature on Indoor and Outdoor COVID-19 Infections

Author:

Salih Jalal M.1ORCID

Affiliation:

1. Physics Department, College of Science, University of Duhok, AJ Duhok 1006, Kurdistan Region, Iraq

Abstract

Environmental conditions and their association with COVID-19 have significantly attracted scientists’ attention. The current study links COVID-19 with climate indicators by comparing two configurations: indoor infections in a University of Duhok (UOD) building and outdoor infections within the boundaries of the Duhok Governorate (DG). The collected data included temperature and relative humidity (RH) and confirmed cases for indoor and outdoor configurations over 5 and 11 months, respectively. For the indoor infections, data were collected over the period of 5 weekdays, while for the outdoor infections, they were collected on the days when statistics were published. The prospective cross-section design was used for different statistical analyses. The overall indoor infections were very low, and the maximum values for RH and temperature were approximately <24% and <20°C, respectively; in the one-sample t-test, the results were significantly correlated ( p value <0.05) with the confirmed COVID-19 cases. For outdoor infections, using the correlation bivariate method, the study found that the RH and temperature results significantly correlated ( p value <0.05) with the confirmed COVID-19 cases. However, for indoor configuration, other than for Tmax, the results were not associated. As for the outdoor infections, the RH and temperature averages were high enough to put in groups to employ the one-way repeated ANOVA and general linear model with the same results. The means of the RHlow, RHmedium, and RHh groups were significantly correlated ( p value <0.05) with COVID-19. However, the means of the medium RH and high RH groups were not significantly associated with the increasing outdoor infections. This study will contribute to the reduction of overall COVID-19 infections.

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3