Current State of Modern Biotechnological-BasedAeromonas hydrophilaVaccines for Aquaculture: A Systematic Review

Author:

Mzula Alexanda12ORCID,Wambura Philemon N.23,Mdegela Robinson H.2,Shirima Gabriel M.1

Affiliation:

1. Department of Global Health and Biomedical Sciences, School of Life Science and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania

2. College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania

3. National Ranching Company (NARCO), Ministry of Livestock and Fisheries Development, Tanzania

Abstract

This systematic review describes what “the cutting edge vaccines forAeromonas hydrophilaare”. The focus is on types of high tech biotechnological based vaccines, target gene or antigen in developing these vaccines, and challenge model fish species used in vaccines efficacy testing. Vaccines delivery methods, immune response, and their efficacy, adjuvant or carrier systems used, and the overall experimental setup or design of the vaccines under investigation are also described. The search for the original papers published between 2009 and 2018 was conducted in June of 2018, using the PubMed and Google scholar electronic database. Twenty-three (23/4386) studies were included in the final assembly using PRISMA guidelines (Protocol not registered). Recombinant protein vaccines were the highly experimented type of the modern biotechnological based vaccines identified in the selected studies (16/23; 70%). Outer membrane proteins (OMPs) of differentβ-barrels were shown to be a potential antigenic entity forA. hydrophilavaccines (57%). Intraperitoneal route with conventional carries or adjuvants was the highly applied delivery system while very few studies used herbal based vaccine adjuvants and nanomaterial as a vaccine carrier. Variation was observed in terms of protection levels in the selected studies. The experimental designs partly contributed to the observed variation. Therefore, recombinant vaccines that use new carrier system technologies and delivered through oral route in feeds would have been of great value for use in the prevention and control ofA. hydrophilainfections in fish. Despite the usefulness as academic tools to identify what is important in pathogenicity of the etiological agent to the host fish, these vaccines are only economically viable in very high-value animals. Therefore, if vaccination is a good option forA. hydrophilagroup, then simple autogenous vaccines based on accurate typing and evidence-based definition of the epidemiological unit for their use would be the most viable approach in terms of both efficacy and economic feasibility especially in low and middle-income countries (LMIC).

Funder

Nelson Mandela African Institution of Science and Technology

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3