Transcriptomics Analysis ofCandida albicansTreated with Huanglian Jiedu Decoction Using RNA-seq

Author:

Yang Qianqian12,Gao Lei3,Tao Maocan1,Chen Zhe1,Yang Xiaohong1,Cao Yi1

Affiliation:

1. Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou 310006, China

2. College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao 266109, China

3. Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, 266 West Cunxi Road, Zibo 255049, China

Abstract

Candida albicansis the major invasive fungal pathogen of humans, causing diseases ranging from superficial mucosal infections to disseminated, systemic infections that are often life-threatening. Resistance ofC. albicansto antifungal agents and limited antifungal agents has potentially serious implications for management of infections. As a famous multiherb prescription in China, Huanglian Jiedu Decoction (HLJJD,Orengedokutoin Japan) is efficient againstTrichophyton mentagrophytesandC. albicans. But the antifungal mechanism of HLJDD remains unclear. In this study, by using RNA-seq technique, we performed a transcriptomics analysis of gene expression changes forC. albicansunder the treatment of HLJDD. A total of 6057 predicted protein-encoding genes were identified. By gene expression analysis, we obtained a total of 735 differentially expressed genes (DEGs), including 700 upregulated genes and 35 downregulated genes. Genes encoding multidrug transporters such as ABC transporter and MFS transporter were identified to be significantly upregulated. Meanwhile, by pathway enrichment analysis, we identified 26 significant pathways, in which pathways of DNA replication and transporter activity were mainly involved. These results might provide insights for the inhibition mechanism of HLJDD againstC. albicans.

Funder

National Science Foundation

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3