Assessment of the Ionospheric and Tropospheric Effects in Location Errors of Data Collection Platforms in Equatorial Region during High and Low Solar Activity Periods

Author:

da Silva Áurea Aparecida1,Yamaguti Wilson1,Kuga Hélio Koiti2ORCID,Celestino Cláudia Celeste3

Affiliation:

1. Space Systems Division (DSE), National Institute for Space Research (INPE), 12227-010 São José dos Campos, SP, Brazil

2. Space Mechanics and Control Division (DMC), National Institute for Space Research (INPE), 12227-010 São José dos Campos, SP, Brazil

3. Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas (CECS), Universidade Federal do ABC (UFABC), 09210-170 Santo André, SP, Brazil

Abstract

The geographical locations of data collection platforms (DCP) in the Brazilian Environmental Data Collection System are obtained by processing Doppler shift measurements between satellites and DCP. When the signals travel from a DCP to a satellite crossing the terrestrial atmosphere, they are affected by the atmosphere layers, which generate a delay in the signal propagation, and cause errors in its final location coordinates computation. The signal propagation delay due to the atmospheric effects consists, essentially, of the ionospheric and tropospheric effects. This work provides an assessment of ionospheric effects using IRI and IONEX models and tropospheric delay compensation using climatic data provided by National Climatic Data Center. Two selected DCPs were used in this study in conjunction with SCD-2 satellite during high and low solar activity periods. Results show that the ionospheric effects on transmission delays are significant (about hundreds of meters) in equatorial region and should be considered to reduce DCP location errors, mainly in high solar activity periods, while in those due to tropospheric effects the zenith errors are about threemeters. Therefore it is shown that the platform location errors can be reduced when the ionospheric and tropospheric effects are properly considered.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3