Affiliation:
1. School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha 410004, China
Abstract
Input and state constraints widely exist in chemical processes. The optimal control of chemical processes under the coexistence of inequality constraints on input and state is challenging, especially when the process model is only partially known. The objective of this paper is to design an applicable optimal control for chemical processes with known model structure and unknown model parameters. To eliminate the barriers caused by the hybrid constraints and unknown model parameters, the inequality state constraints are first transformed into equality state constraints by using the slack function method. Then, adaptive dynamic programming (ADP) with nonquadratic performance integrand is adopted to handle the augmented system with input constraints. The proposed approach requires only partial knowledge of the system, i.e., the model structure. The value information of the model parameters is not required. The feasibility and performance of the proposed approach are tested using two nonlinear cases including a continuous stirred-tank reactor (CSTR) example.
Funder
National Natural Science Foundation of China
Subject
Multidisciplinary,General Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献