Probe Selection and Power Weighting in Multiprobe OTA Testing: A Neural Network-Based Approach

Author:

Li Yong1ORCID,Sun Hao1ORCID,Chen Xingyu2ORCID,Xin Lijian1ORCID,Zhang Xiang3ORCID

Affiliation:

1. Key Laboratory of Universal Wireless Communications (Ministry of Education), Beijing University of Posts and Telecommunications, Beijing 100876, China

2. Department of Electronic and Information Engineering, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China

3. China Academy of Information and Communications Technology, Beijing 100191, China

Abstract

Over-the-air (OTA) radiated testing is an efficient solution to evaluate the performance of multiple-input multiple-output (MIMO) capable devices, which can emulate realistic multipath channel conditions in a controlled manner within lab environment. In a multiprobe anechoic chamber- (MPAC-) based OTA setup, determining the most appropriate probe locations and their power weights is critical to improve the accuracy of channel emulation at reasonable system costs. In this paper, a novel approach based on neural networks (NNs) is proposed to derive suitable angular locations as well as power weights of OTA probe antennas; in particular, by using the regularization technique, active probe locations and their weights can be optimized simultaneously with only one training process of the proposed NN. Simulations demonstrate that compared with the convex optimization-based approach to perform probe selection in the literature, e.g., the well-known multishot algorithm, the proposed NN-based approach can yield similar channel emulation accuracy with significantly reduced computational complexity.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3