Mathematical Optimization Method of Low-Impact Development Layout in the Sponge City

Author:

Men Hong1ORCID,Lu Hao1ORCID,Jiang Wenjuan1ORCID,Xu Duo2ORCID

Affiliation:

1. School of Automation Engineering, Northeast Electric Power University, Jilin 132000, China

2. China Railway Construction Bridge Engineering Bureau Group 3rd Engineering Co., Tianjin 300300, China

Abstract

Aiming at the optimization layout of distributed low-impact development (LID) practices in the sponge city, a new mathematical method combining Stormwater Management Model (SWMM) and preference-inspired co-evolutionary algorithm using goal vectors (PICEA-g) was developed and was applied in the Ximen waterlogged area of Pingxiang City. Firstly, a block-scaled rainfall-runoff model was built in the study area by using SWMM. Then, an LIDs area optimization model was established by linking the SWMM and the PICEA-g based on the Matlab platform, which took the area ratios of various LIDs in each block as decision variables and took the total runoff, peak flow, suspended substance (SS) pollutant, and LIDs cost as objective functions. Thus, the problem of LIDs layout was turned into a mathematical optimization issue. So the cost-benefit optimal solutions with different emphases were found by using this algorithm, and the LIDs layout optimal scheme for this area was further analysed and verified by rainfall-runoff model. The results show that the total runoff reduction rates of the system reach a maximum of 21.8%, the peak flow reduction rates of the system are more than 10%, and the SS pollutant reduction rates are reduced by about 30% compared with before LIDs under the design storms of different return periods. The reduction rates of each runoff index are higher than the nondominated sorting genetic algorithm II (NSGA-II) method, and decision-makers can more effectively analyse the cost-benefit optimal solution from the Pareto solution sets. Therefore, the LIDs layout optimization method proposed in this paper has obvious advantages in solving similar many-objective optimization problems (MOOPs) in sponge city construction.

Funder

China Railway Construction Bridge Engineering Bureau Group Co.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3