Hybrid Music Recommendation Algorithm Based on Music Gene and Improved Knowledge Graph

Author:

Zhang Tingting1ORCID,Liu Shengnan1

Affiliation:

1. College of Music, Shijiazhuang University, Hebei 050035, China

Abstract

Combining music as a specific recommendation object, a hybrid recommendation algorithm based on music genes and improved knowledge graph is proposed for the traditional single recommendation algorithm that cannot effectively solve the accuracy problem in music recommendation. The algorithm first gives the recommendation pattern of music genes and gets the relevant recommendation results through the genetic preference analysis. After that, the algorithm in this paper utilizes item and user label information and knowledge graphs from two different domains to enrich and mine the potential information of users and items. In addition, deep learning method is applied to extract low-dimensional, abstract deep semantic features of users and items, based on which, score prediction is performed. The mixed-mode based recommendation addresses the drawbacks of these two recommendations and can adopt different weighting strategies in different situations. The advantages of music gene and knowledge graph-based recommendation algorithms are combined via this method. The experimental results indicate that the algorithm in this paper outperforms other existing recommendation algorithms.

Funder

Shijiazhuang University

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Reference16 articles.

1. Infrastructural constraints of Cloud computing;R. Kollolu;International Journal of Management, Technology and Engineering,2020

2. Big data service architecture: A survey;J. Wang;Journal of Internet Technology,2020

3. Improvising personalized travel recommendation system with recency effects

4. Using deep learning approach and IoT architecture to build the intelligent music recommendation system

5. A deep music genres classification model based on CNN with Squeeze & Excitation Block;Y. Xu

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3