A Novel Image Edge Detection Method Based on the Asymmetric STDP Mechanism of the Visual Path

Author:

Fang Tao1ORCID,Yuan Jiantao1,Yin Rui1ORCID,Wu Celimuge2ORCID

Affiliation:

1. School of Information & Electrical Engineering, Zhejiang University City College, Hangzhou 310015, China

2. Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan

Abstract

The detection of image edges plays an important role for image processing. In view of the fact that these existing methods cannot effectively detect the edge of the image when facing the image with rich details. This paper proposes a novel method of asymmetric spike-timing-dependent plasticity (STDP) image edge detection based on the visual physiological mechanism. In the proposed method, the original image is preprocessed by the Gabor filter to simulate the visual physiological orientation characteristics to obtain the image information in different directions, and the orientation feature fusion is used to reconstruct the primary edge feature information of the image. Then, based on the mechanism of the visual nervous system, a neuron network composed of dynamic synapses based on the asymmetric STDP mechanism is constructed to further process it to obtain impulse response images. In order to eliminate disturbance of the neuron’s system noise on the impulse response image, the impulse response image is filtered by a Gaussian filter. Then, the lateral inhibition between neurons is applied to refine the filtered image edges. Finally, the result is normalized, and the final edge of the experimental image is obtained. Experimental results based on the colony image data set collected in the laboratory indicate that the proposed method achieved better performance than these state-of-the-art methods; meanwhile, the AUC value remains above 0.6.

Funder

Japan Society for the Promotion of Science

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Edge Detection Scheme Based on the Multi-Resolution form of Singular Value Decomposition;2023 International Conference on Electrical, Computer and Energy Technologies (ICECET);2023-11-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3