High-Dimensional Feature Selection Based on Improved Binary Ant Colony Optimization Combined with Hybrid Rice Optimization Algorithm

Author:

Ye A. Zhiwei1,Li B. Ruihan1ORCID,Zhou C. Wen1,Wang D. Mingwei1,Mei E. Mengqing1,Shu F. Zhe1,Shen G. Jun2ORCID

Affiliation:

1. School of Computer Science, Hubei University of Technology, 430068 Wuhan, China

2. School of Computing and Information Technology, University of Wollongong, Wollongong, Australia

Abstract

In the realm of high-dimensional data analysis, numerous fields stand to benefit from its applications, including the biological and medical sectors that are crucial for computer-aided disease diagnosis and prediction systems. However, the presence of a significant number of redundant or irrelevant features can adversely affect system accuracy and real-time diagnosis efficiency. To mitigate this issue, this paper proposes two innovative wrapper feature selection (FS) methods that integrate the ant colony optimization (ACO) algorithm and hybrid rice optimization (HRO). HRO is a recently developed metaheuristic that mimics the breeding process of the three-line hybrid rice, which is yet to be thoroughly explored in the context of solving high-dimensional FS problems. In the first hybridization, ACO is embedded as an evolutionary operator within HRO and updated alternately with it. In the second form of hybridization, two subpopulations evolve independently, sharing the local search results to assist individual updating. In the initial stage preceding hybridization, a problem-oriented heuristic factor assignment strategy based on the importance of the knee point feature is introduced to enhance the global search capability of ACO in identifying the smallest and most representative features. The performance of the proposed algorithms is evaluated on fourteen high-dimensional biomedical datasets and compared with other recently advanced FS methods. Experimental results suggest that the proposed methods are efficient and computationally robust, exhibiting superior performance compared to the other algorithms involved in this study.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Artificial Intelligence,Human-Computer Interaction,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3