Effects of Welded Mechanical Heterogeneity on Interface Crack Propagation in Dissimilar Weld Joints

Author:

Yang Fu-qiang1ORCID,Xue He2ORCID,Zhao Ling-yan1ORCID,Fang Xiu-rong2ORCID

Affiliation:

1. School of Science, Xi’an University of Science & Technology, Xi’an 710054, China

2. School of Mechanical Engineering, Xi’an University of Science & Technology, Xi’an 710054, China

Abstract

The stress and strain status associated with the material properties is one of the main factors affecting stress corrosion cracking (SCC) of structural components in nuclear power plants (NPPs). In many SCC prediction models, the stress intensity factor calculated with homogeneous materials is used to characterize the crack tip stress state. However, the mechanical and material properties in weld joints are heterogeneous, which will produce the discontinuous distribution of stress and strain nearby crack tip and affect the crack propagation. To understand the material mechanical heterogeneity effects on interface crack propagation, the specimens with ultimate tensile strength mismatch and elastic modulus mismatch were studied by using an extended finite element method (XFEM). The results indicate that the interface crack extension is easy to occur in the specimens with larger ultimate tensile strength mismatch, while the elastic modulus mismatch has little effects on crack extension. The different interface cracks in the dissimilar metal weld joints of the reactor pressure vessel used in NPPs tend to deviate from the initial direction into alloy 182, and the interface crack propagation path fluctuation is small.

Funder

State Key Laboratory For Marine Corrosion and Protection, Luoyang Ship Material Research Institute

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3