Affiliation:
1. College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
Abstract
The free vibration and damping characteristics of rotating shaft with passive constrained layer damping (CLD) are studied. The shaft is made of fiber reinforced composite materials. A composite beam theory taking into account transverse shear deformation is employed to model the composite shaft and constraining layer. The equations of motion of composite rotating shaft with CLD are derived by using Hamilton’s principle. The general Galerkin method is applied to obtain the approximate solution of the rotating CLD composite shaft. Numerical results for the rotating CLD composite shaft with simply supported boundary condition are presented; the effects of thickness of constraining layer and viscoelastic damping layers, lamination angle, and rotating speed on the natural frequencies and modal dampings are discussed.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献