Affiliation:
1. Institute of Mathematics for Applications, Civil Aviation University of China, Tianjin 300300, China
Abstract
The flight scheduling is a real-time optimization problem. Whenever the schedule is disrupted, it will not only cause inconvenience to passenger, but also bring about a large amount of operational losses to airlines. Especially in case an irregular flight happens, the event is unanticipated frequently. In order to obtain an optimal policy in airline operations, this paper presents a model in which the total delay minutes of passengers are considered as the optimization objective through reassigning fleets in response to the irregular flights and which takes into account available resources and the estimated cost of airlines. Owing to the uncertainty of the problem and insufficient data in the decision-making procedure, the traditional modeling tool (probability theory) is abandoned, the uncertainty theory is applied to address the issues, and an uncertain programming model is developed with the chance constraint. This paper also constructs a solution method to solve the model based on the classical Hungarian algorithm under uncertain conditions. Numerical example illustrates that the model and its algorithm are feasible to deal with the issue of irregular flight recovery.
Funder
Fundamental Research Funds for the Central Universities
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献