Erythrocyte Fraction in Thrombi Is Increased with Serum Iron by Influencing Fibrin Networks via Oxidative Stress

Author:

Liu Mingli1ORCID,Chen Minghui1ORCID,Hao Zhongfei1,Li Qingbin1ORCID,Feng Yan1ORCID,Li Yongli1ORCID,Li Ruiyan1ORCID

Affiliation:

1. The Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, China

Abstract

Objective. This study investigated whether the erythrocyte fraction in thrombi would be increased with serum iron via oxidative stress. Methods. This study retrospectively enrolled patients with acute ischemic stroke treated using endovascular treatment in a single stroke center from October to December 2019. We examined the relationship between serum iron and erythrocyte-rich thrombi and the correlation of serum iron and the erythrocyte fraction in thrombi using clinical samples. Experiments in vivo and in vitro were performed to investigate the influence of oxidative stress on the correlation between serum iron concentration and erythrocyte fraction in thrombi. Results. We found from the clinical samples that serum iron concentration was related to erythrocyte-rich thrombi and positively associated with the erythrocyte fraction in thrombi in vivo. Further, the tightness of the fibrin networks regulating the erythrocyte fraction in thrombi was increased with serum iron concentration in vivo. Additionally, the oxidative stress level was increased with serum iron concentration in vivo. Moreover, we found that the tightness of the fibrin networks increased with higher oxidative stress levels in vitro. Lastly, experiments in vivo with inhibiting oxidative stress showed that the erythrocyte fraction in thrombi and the tightness of fibrin networks significantly increased in the iron group than those in the iron with oxidative stress inhibitor group and control group. Conclusions. Oxidative stress played a role in the process that the erythrocyte fraction in thrombi was increased with serum iron by influencing fibrin networks.

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3