Affiliation:
1. College of Information and Communication Engineering, Harbin Engineering University, Harbin, China
Abstract
Signal modulation recognition is widely utilized in the field of spectrum detection, channel estimation, and interference recognition. With the development of artificial intelligence, substantial advances in signal recognition utilizing deep learning approaches have been achieved. However, a huge amount of data is required for deep learning. With increasing focus on privacy and security, barriers between data sources are sometimes difficult to break. This limits the data and renders them weak, so that deep learning is not sufficient. Federated learning can be a viable way of solving this challenge. In this article, we will examine the recognition of signal modulation based on federated learning with differential privacy, and the results show that the recognition rate is acceptable while data protection and security are being met.
Funder
Harbin Engineering University
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献