A Dynamic Model of Information‐Vaccination‐Disease That Accounts for Emerging Viral Variants: Model Development and a Case Study for COVID‐19 in Iceland

Author:

Zhao LaijunORCID,Ying MingminORCID,Qian YingORCID,Zhou LixinORCID,Yang PingleORCID

Abstract

Pathogens mutate as diseases spread, and variants that become epidemic or pandemic strains have higher transmission rates and a greater capacity to escape vaccine protection. Considering different vaccine efficacy and vaccination rates is of great significance for the prevention and control of infectious diseases. The spread of vaccination information and the level of trust in vaccinations determine whether people will choose to be vaccinated. To analyze these factors, we developed mean‐field equations for system dynamics to model the complex system of vaccine information dissemination and vaccination, calculated the basic reproduction rate number, and used the Icelandic COVID‐19 outbreak (Omicron variant) as a case study. We found that in the face of emerging variants, increasing vaccine efficacy is more effective than increasing vaccination rates. If vaccine efficacy increases from 40% to 90%, infections can be decreased by 98.5%. However, even a 100% vaccination rate cannot stop the spread of a mutated virus if vaccine efficacy falls below a certain level. High vaccination rates decrease the virus transmission rate. If the efficacy of the vaccine diminishes, the infection will spread rapidly, leading to a greater number of individuals becoming infected with the infectious disease. Due to the high vaccine efficacy against major illnesses and fatalities, improving vaccination rates can lower deaths. Iceland could decrease deaths by 44.8% by raising the vaccination rate from 75.9% to 95.0%. To combat emerging virus variants, it is therefore necessary to both create more effective vaccines and raise awareness of the benefits of vaccination to increase vaccination rates.

Funder

Major Program of National Fund of Philosophy and Social Science of China

National Science Fund for Distinguished Young Scholars

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3