A Generative Image Inpainting Model Based on Edge and Feature Self-Arrangement Constraints

Author:

Yao Fan1ORCID,Chu Yanli2

Affiliation:

1. College of Information Engineering, Xizang Minzu University, Xian Yang, Shaanxi, China

2. College of Equipment Management and Support, Engineering University of PAP, Xi’an 710086, China

Abstract

At present, the image inpainting method based on deep learning has achieved a better inpainting effect than traditional methods, but the inpainting results still have problems such as local structure disorder and blurred texture when the images involving a large defect area are processed. This paper proposes a second-order generative image inpainting model based on edge and feature self-arrangement constraints. The model consists of two parts: edge repair network and image repair network. Based on the self-encoder, the edge repair network generates the edges in the defect area according to the known information of the image and improves the edge repair effect by minimizing the adversarial loss and feature matching loss. The image inpainting network fills the defect area with the edge repair result as a priori condition. On the basis of U-Net, the feature self-arrangement module (FSM) is proposed to reconstruct the coding features of a specific scale, and the reconstructed feature skips to connect the decoding layer of the same scale, and it is fused with the upper layer underlying features for decoding. Meanwhile, guide loss, adversarial loss, and reconstruction loss are introduced to narrow the difference between the repaired image and the original image. The experimental results show that the inpainting results of the proposed model have stronger structural connectivity and clearer textures and the performance of PSNR, SSIM, and mean L1 loss in the Celeba, Facade, and Places2 is better than other inpainting methods, indicating that the algorithm can produce an inpainting effect with highly connected structure, reasonable semantics, and fine details.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3