Affiliation:
1. College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, China
Abstract
Unmanned aerial vehicles (UAVs) have the characteristics of high mobility and wide coverage, making them widely used in coverage, search, and other fields. In these applications, UAV often has limited energy. Therefore, planning a time-efficient coverage path for energy-constrained UAV to cover the area of interest is the core issue. The existing coverage path planning algorithms assume that the UAV moves at a constant speed, without taking into account the cost of turns (including deceleration, turning, and acceleration), which is unrealistic. To solve the above problem, we propose a time-efficient coverage path planning (TECPP) algorithm for the energy-constrained UAV. We build a novel gadget-based graph model, which formalizes the time and energy costs of the flight path including straight flights and making turns (deceleration, turning, and acceleration). Moreover, our graph model is suitable for irregular-shaped areas with multiple obstacles. Finally, we transform the above problem into a generalized traveling salesman problem (GTSP) and use the generalized large neighborhood search (GLNS) solver to solve it. The experimental results show that TECPP outperforms the existing coverage path planning algorithms, and TECPP saves at least 21.6% of time.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献