Time-Efficient Coverage Path Planning for Energy-Constrained UAV

Author:

Huang Yanxi1ORCID,Xu Jiankang1ORCID,Shi Mengting1ORCID,Liu Liang1ORCID

Affiliation:

1. College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, China

Abstract

Unmanned aerial vehicles (UAVs) have the characteristics of high mobility and wide coverage, making them widely used in coverage, search, and other fields. In these applications, UAV often has limited energy. Therefore, planning a time-efficient coverage path for energy-constrained UAV to cover the area of interest is the core issue. The existing coverage path planning algorithms assume that the UAV moves at a constant speed, without taking into account the cost of turns (including deceleration, turning, and acceleration), which is unrealistic. To solve the above problem, we propose a time-efficient coverage path planning (TECPP) algorithm for the energy-constrained UAV. We build a novel gadget-based graph model, which formalizes the time and energy costs of the flight path including straight flights and making turns (deceleration, turning, and acceleration). Moreover, our graph model is suitable for irregular-shaped areas with multiple obstacles. Finally, we transform the above problem into a generalized traveling salesman problem (GTSP) and use the generalized large neighborhood search (GLNS) solver to solve it. The experimental results show that TECPP outperforms the existing coverage path planning algorithms, and TECPP saves at least 21.6% of time.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3