Spatio-Frequency Decoupled Weak-Supervision for Face Reconstruction

Author:

Li Yanyan1,Peng Weilong1ORCID,Tang Keke1ORCID,Fang Meie1ORCID

Affiliation:

1. Guangzhou University, Guangzhou, China

Abstract

3D face reconstruction has witnessed considerable progress in recovering 3D face shapes and textures from in-the-wild images. However, due to a lack of texture detail information, the reconstructed shape and texture based on deep learning could not be used to re-render a photorealistic facial image since it does not work in harmony with weak supervision only from the spatial domain. In the paper, we propose a method of spatio-frequency decoupled weak-supervision for face reconstruction, which applies the losses from not only the spatial domain but also the frequency domain to learn the reconstruction process that approaches photorealistic effect based on the output shape and texture. In detail, the spatial domain losses cover image-level and perceptual-level supervision. Moreover, the frequency domain information is separated from the input and rendered images, respectively, and is then used to build the frequency-based loss. In particular, we devise a spectrum-wise weighted Wing loss to implement balanced attention on different spectrums. Through the spatio-frequency decoupled weak-supervision, the reconstruction process can be learned in harmony and generate detailed texture and high-quality shape only with labels of landmarks. The experiments on several benchmarks show that our method can generate high-quality results and outperform state-of-the-art methods in qualitative and quantitative comparisons.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference60 articles.

1. Deep face recognition: A survey

2. Meshtalk: 3d face animation from speech using cross-modality disentanglement;A. Richard

3. PhilipJ.Multi-view image-based editing and rendering through deep learning and optimization2021Nice, FranceUniveristé Nice Sophia AntipolisPhD Thesis

4. Robust and accurate shape model fitting using random forest regression voting;T. F. Cootes,2012

5. Fully automated and highly accurate dense correspondence for facial surfaces;C. M. Grewe,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Overview Frequency Principle/Spectral Bias in Deep Learning;Communications on Applied Mathematics and Computation;2024-09-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3