The Protective Effect of Adiponectin-Transfected Endothelial Progenitor Cells on Cognitive Function in D-Galactose-Induced Aging Rats

Author:

Huang Jing1,Hou Botong1,Zhang Shuaimei12,Wang Meiyao1ORCID,Lu Xuanzhen1,Wang Qunfeng1,Liu Yumin1ORCID

Affiliation:

1. Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China

2. Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China

Abstract

Aging is a multifactorial process involving the cumulative effects of inflammation, oxidative stress, and mitochondrial dynamics, which can produce complex structural and biochemical alterations to the nervous system and lead to dysfunction of microcirculation, blood-brain barrier (BBB), and other problems in the brain. Long-term injection of D-galactose (D-gal) can induce chronic inflammation and oxidative stress, accelerating aging. The model of accelerated aging with long-term administration of D-gal have been widely used in anti-aging studies, due to the increase of chronic inflammation and decline of cognition that similarity with natural aging in animals. However, despite extensive researches in the D-gal-induced aging rats, studies on their microvasculature remain limited. Endothelial progenitor cells (EPCs), which are precursors to endothelial cells (ECs), play a significant role in the repair and regeneration process of endogenous blood vessel, and adiponectin (APN), a protein derived from adipocyte, has many effects on protective vascular endothelium and anti-inflammatory. Recently, many studies have shown that APN can promote improvements in cognitive function. Under these circumstances, we investigated the neuroprotective effect of the APN-transfected EPC (APN-EPC) treatment on rats after administration with D-gal and explored the likely underlying mechanisms. Compared to model group for D-gal administration, better cognitive function and denser microvessels were significantly found in the APN-EPC treatment group, and indicated APN-EPC treatment in aging rats could improve the cognitive dysfunction and microvessel density. The level of proinflammatory cytokines IL-1β, IL-6, and TNF-α, activated astrocytes and apoptosis rate were significantly reduced in the APN-EPC group compared with the model group, showed that APN-EPCs alleviated the neuroinflammation in aging rats. In addition, the APN-EPC group inhibited the decrease of BBB-related proteins claudin-5, occludin, and Zo-1 in aging rats and attenuated BBB dysfunction significantly. These results of our study indicated that APN-EPC treatment in D-gal-induced aging rats have a positive effect on improving cognitive and BBB dysfunction, increasing angiogenesis, and reducing neuroinflammation and apoptosis rate. This research suggests that cell therapy via gene modification may provide a safe and effective approach for the treatment of age-related neurogenerative diseases.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3