Affiliation:
1. Department of Industrial Engineering and Systems Management, Feng Chia University, 100 Wenhwa Road, Seatwen, Taichung 408, Taiwan
Abstract
Productivity is always considered as one of the most basic and important factors to the competitiveness of a factory. For this reason, all factories have sought to enhance productivity. To achieve this goal, we first need to estimate the productivity. However, there is considerable degree of uncertainty in productivity. For this reason, a fuzzy collaborative forecasting approach is proposed in this study to forecast the productivity of a factory. First, a learning model is established to estimate the future productivity. Subsequently, the learning model is converted into three equivalent nonlinear programming problems to be solved from various viewpoints. The fuzzy productivity forecasts by different experts may not be equal and should therefore be aggregated. To this end, the fuzzy intersection and back propagation network approach is applied. The practical example of a dynamic random access memory (DRAM) factory is used to evaluate the effectiveness of the proposed methodology.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献