Stress Corrosion Cracking of a Forged Mg-Al-Zn Alloy with Different Surface Conditions

Author:

Yin Zhongwei1,Liu Fengjuan1ORCID,Song Dongdong1,He Shihuan1,Lin Jun1,Yu Feng1

Affiliation:

1. Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, China

Abstract

Stress corrosion cracking (SCC) of a forged Mg-Al-Zn magnesium alloy with different surface conditions was studied by the four-point bending test and alternate immersion test in NaCl solution. The results showed that the bare Mg-Al-Zn magnesium alloy has low susceptivity to SCC, and no abrupt rupture happened after the immersion test for 5 days under an initial stress load of 0.15–0.75σ0.2. With microarc oxidation (MAO) coating, corrosion resistance was enhanced, but more surface cracks were induced, and microcracks could be detected inside corrosive pits when the load was 0.75σ0.2, which is similar to the bare alloy. The composite coating totally avoided both SCC and corrosion. The low susceptivity of the forged AQ80M alloy to SCC should be attributed to the fine grain size and even distribution of secondary phases around the grain boundary.

Funder

Advanced Research project of General Armament Department

Publisher

Hindawi Limited

Subject

General Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3