Study on the Fractal Characteristics of Coal Body Fissure Development and the Law of Coalbed Methane Migration of around the Stope

Author:

Yang He12,Liu Zhen12ORCID,Zhu Danliang12,Yang Wenzhi12,Zhao Dawei12,Wang Wendi12

Affiliation:

1. College of Safety and Environmental Engineering, Shandong University of Science and Technology, 579 Qianwangang Rd, Huangdao District, Qingdao 266590, China

2. State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China

Abstract

Due to the complicated coalbed methane (CBM) occurrence conditions and the diverse geological structures in China, the promotion and application of the coal and gas simultaneous extraction technology have been seriously restricted. In view of this, this paper chooses Qingdong Coal Mine protection layer mining and CBM extraction field practice as the research background. Firstly, based on the similar material simulation experiment that simulates coal mining, the dynamic changing pattern of a mining field’s overburdened strata and corresponding stress are obtained, the relationship between gas desorption and stress can then be clarified. Further, with the help of the fractal theory and box counting method, the fracture development characteristics of the overlying strata are quantitatively described on the basis of experimental images. Finally, by building a model for calculating the penetrability coefficient of coal seam based on fractal dimension of mining fissure and analyzing the relationship between fissure development and fractal dimension, the gas migration law and the fissure development areas of #7 and #8 overburden strata where CBM concentrates can be revealed and determined. According to the orientation of the area mentioned above, the location of the CBM pumping field in relation to the coal seam roof and the arrangement of CBM extraction boreholes can be optimized, which make CBM extraction efficient. Meanwhile, the risk of coal and gas outburst is significantly reduced when the CBM concentration is controlled within 0.2% to 0.6% outside the corner of the working face and 0.1% to 0.35% in return flow, which is lower than 0.8%, the threshold of CBM concentration.

Funder

Innovation Fund-funded Projects of Postgraduate of Shandong University of Science and Technology

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3