Affiliation:
1. Department of Computer and Software Engineering, École Polytechnique de Montréal, P.O. Box 6079, Station Downtown, Montreal, QC, Canada H3C 3A7
Abstract
This paper focuses on the analysis of execution traces for real-time systems. Kernel tracing can provide useful information, without having to instrument the applications studied. However, the generated traces are often very large. The challenge is to retrieve only relevant data in order to find quickly complex or erratic real-time problems. We propose a new approach to help finding those problems. First, we provide a way to define the execution model of real-time tasks with the optional suggestions of a pattern discovery algorithm. Then, we show the resulting real-time jobs in a Comparison View, to highlight those that are problematic. Once some jobs that present irregularities are selected, different analyses are executed on the corresponding trace segments instead of the whole trace. This allows saving huge amount of time and execute more complex analyses. Our main contribution is to combine the critical path analysis with the scheduling information to detect scheduling problems. The efficiency of the proposed method is demonstrated with two test cases, where problems that were difficult to identify were found in a few minutes.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献