Anthocyanin-Sensitized TiO2 Nanoparticles for Phenazopyridine Photodegradation under Solar Simulated Light

Author:

Zyoud Ahed H.1ORCID,Saleh Fedaa1,Helal Muath H.2,Shawahna Ramzi3ORCID,Hilal Hikmat S.1

Affiliation:

1. SSERL, Chemistry Department, An-Najah National University, Nablus, State of Palestine

2. College of Pharmacy, An-Najah National University, Nablus, State of Palestine

3. Department of Physiology, Pharmacology and Toxicology, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, State of Palestine

Abstract

Pharmaceutical wastes are emerging as water contaminants. Like other organic contaminants, it is necessary to find safe and economic methods to remove them from the water. In this work, anthocyanin was used as a natural dye sensitizer for the wide band gap nanosize rutile TiO2. The TiO2/Anthocyanin particles were supported on activated carbon particle surfaces. The resulting composite, which was prepared and characterized by different methods, was then used as a catalyst in the photodegradation of phenazopyridine (a model pharmaceutical contaminant) under a solar simulated light. Depending on experimental conditions, up to 90% of the contaminant was mineralized leaving no new organic products in the reaction mixture. The results show the feasibility of using the activated carbon-supported TiO2/Anthocyanin photocatalyst for pharmaceutical contaminant removal in water. The natural dye anthocyanin readily sensitized the TiO2 to visible light. The unsupported TiO2, with its nanosize particles, was not easy to recover by simple separation methods, while the activated carbon-supported catalyst was easily isolated by decantation after reaction cessation. Moreover, the recovered AC/TiO2 catalyst could also be regenerated by adding fresh anthocyanin sensitizer after recovery for further reuse. Keeping the contaminant molecules closer to the catalytic sites by adsorption, the support also enhanced the efficiency of photocatalyst.

Funder

Al-Maqdisi Project

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3