Comparative Study of Wellhole Surrounding Rock under Nonuniform Ground Stress

Author:

Jiang Zhongyu12ORCID,Zhou Guoqing1

Affiliation:

1. State Key Lab for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China

2. School of Architecture and Civil Engineering, Anhui Polytechnic University, Wuhu 241000, China

Abstract

The stress analysis of the wellhole surrounding rock and the regular failure of the wellhole has always been a concern for the well builders. Firstly, the Hamilton canonical equations are obtained by using the Hamiltonian variational principle in the sector domain, and the zero eigensolution and nonzero eigensolutions of the homogeneous equation are solved. According to the Hamiltonian operator matrix with the orthogonal eigenfunction system, the special solution form of the nonhomogeneous boundary condition equation is obtained. Then, according to the principle of the same coefficient being equal, the relationship equation between the direction eigenvalue and the angle coefficient is obtained, from which the specific expression of the special solution of the equation can be determined. Furthermore, the analytical solution of the wellhole surrounding rock problem under nonuniform ground stress is obtained by using the linear elastic accumulative principle. Finally, a concrete example is given to compare the finite element method and the symplectic algorithm. The results are consistent, which ensures the accuracy and the reliability of the symplectic algorithm. The relationship between the circumferential stress distribution around the hole and the lateral pressure coefficient is further analyzed.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3