Spatial and Temporal Distribution Law and Influencing Factors of the Mining-Induced Deformation and Failure of Gas Boreholes

Author:

Xue Fei12ORCID,Feng Xiaowei3ORCID

Affiliation:

1. College of Civil Engineering, Shaoxing University, Shaoxing 312000, China

2. Centre of Rock Mechanics and Geohazards, Shaoxing University, Shaoxing 312000, China

3. Key Laboratory of Deep Coal Resource Mining, Ministry of Education of China, School of Mines, China University of Mining and Technology, Xuzhou 221116, China

Abstract

Because gas boreholes are easy to damage by integrated coal mining and gas exploration, based on the practice of relieving pressure in deep thin coal seams in the Huainan mining area, a multidimensional coupling numerical simulation method was used to reveal the space-time evolution characteristics and influence factors of fracture deformation of gob-side gas boreholes. Results indicate that the danger zone for borehole fractures is primarily between 5 and 12 m above the roof of the roadway. The final-hole position has little effect on the stability of boreholes, and migrating the open-hole position to the entity coal side and roadway roof side can improve the stability of the borehole. The initial failure of the borehole occurs at a distance of 10 m behind the coal face. The failure of the borehole is largely stable at a distance of 100 to 120 m behind the coal face. With the increase in mining height, which leads to an increase in the movement of strata and an increase in pressure relief range, the shear stability of the borehole is reduced, and the extrusion stability of the borehole is improved. A hard roof condition promotes borehole shear stability, while a weak roof condition promotes borehole extrusion stability. This change can decrease the maintenance difficulty associated with “minor supports” in boreholes to a certain extent by reinforcing the support strength of “primary supports” in roadway retaining walls. The simulation results are consistent with observed results for the 11 test boreholes, and the accuracy of the numerical simulation is verified.

Funder

Collaborative Innovation Center for Prevention and Control of Mountain Geological Hazards of Zhejiang Province

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3