Prediction of Soil Available Boron Content in Visible-Near-Infrared Hyperspectral Based on Different Preprocessing Transformations and Characteristic Wavelengths Modeling

Author:

Zhu Juanjuan1ORCID,Jin Xiu12,Li Shaowen12ORCID,Han Yalu1,Zheng Wenrui1

Affiliation:

1. Anhui Provincial Key Laboratory of Smart Agricultural Technology and Equipment, Anhui Agricultural University, Hefei 230036, Anhui, China

2. School of Information and Computer Science, Anhui Agricultural University, Hefei 230036, Anhui, China

Abstract

The trace element boron (Boron, B) is an important factor in crops’ development, pollination, and fertilization. Available boron (AB) in soil is the main source of boron nutrient absorption for crops. Rapid detection of AB is of great significance for crop nutrition diagnosis, soil testing and fertilization, precision agriculture development, scientific production management, and guarantee of stable yield and high quality. In this study, we propose a new method to predict soil available boron content using handheld nonimaging hyperspectroscopy in the visible-near-infrared range (350–1655 nm). As boron content is one of the fewest soil chemical elements, a rapid and accurate method has yet to be developed to detect and quantify the soil available boron. Visible-near-infrared ray (VIS-NIR) spectroscopy is widely utilized in the detection and quantification of soil available nutrients. There is, however, scant research on the detection of soil boron based on NIR data, and the performance of current regression model is still far from satisfactory. Our soil samples were collected from southern Anhui, China, with their NIR spectroscopy examined and the NIR data pretreated by 29 transformations and modeled with 10 regression algorithms. Of all the tested methods, SVM_RBF, BPNN, and PLS_RBF algorithms demonstrated the best performance and gave 0.80∼0.82 coefficient of determination value. At the same time, Random Forest algorithm (RFA), Successive Projection Algorithm (SPA), and Variable Importance in Projection (VIP) were used to extract the spectral characteristic wavelength data of soil available boron, and then the characteristic wavelength data were modeled with three regression algorithms: SVM_RBF, PLS_RBF, and BPNN. A comparative analysis of the prediction performance ( R 2 , RPD, RMSE, and RPIQ) of the models established at the full band showed that the RFA-MSC/BPNN model achieved the best performance. Compared with the best full-wavelength model DT/SVM_RBF, the test set achieved a 3.06% increase in R 2 , a 7.12% drop in RMSE, a 7.71% gain in RPD, and a 7.78% increase in RPIQ. Our work sheds lights on how to achieve rapid quantification of the soil available boron concentration.

Funder

Ministry of Agriculture of the People's Republic of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference43 articles.

1. Fractions of soil boron: a review

2. Micronutrient Assessment at the Country Level: An International Study;M. Sillanp Aeae,1990

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3