Context-Fused Guidance for Image Captioning Using Sequence-Level Training

Author:

Feng Junlong1ORCID,Zhao Jianping1ORCID

Affiliation:

1. School of Computer Science and Technology, Changchun University of Science and Technology, Changchun, China

Abstract

Recent image captioning models based on the encoder-decoder framework have achieved remarkable success in humanlike sentence generation. However, an explicit separation between encoder and decoder brings out a disconnection between the image and sentence. It usually leads to a rough image description: the generated caption only contains main instances but neglects additional objects and scenes unexpectedly, which reduces the caption consistency of the image. To address this issue, we proposed an image captioning system within context-fused guidance in this paper. It incorporates regional and global image representation as the compositional visual features to learn the objects and attributes in images. To integrate image-level semantic information, the visual concept is employed. To avoid misleading decoding, a context fusion gate is introduced to calculate the textual context by selectively aggregating the information of visual concept and word embedding. Subsequently, the context-fused image guidance is formulated based on the compositional visual features and textual context. It provides the decoder with informative semantic knowledge. Finally, a captioner with a two-layer LSTM architecture is constructed to generate captions. Moreover, to overcome the exposure bias, we train the proposed model through sequence decision-making. The experiments conducted on the MS COCO dataset show the outstanding performance of our work. The linguistic analysis demonstrates that our model improves the caption consistency of the image.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3