Lower Cambrian Organic-Rich Shales in Southern China: A Review of Gas-Bearing Property, Pore Structure, and Their Controlling Factors

Author:

Li Gang1ORCID,Gao Ping1ORCID,Xiao Xianming1,Lu Chengang1ORCID,Feng Yue1

Affiliation:

1. School of Energy Resources, China University of Geosciences, Beijing 100083, China

Abstract

The Lower Cambrian shales are widely developed in southern China, with greater thicknesses and higher TOC contents. Although the shale gas resource potential has been suggested to be huge, the shale gas exploration and development is not satisfactory. At present, the gas-bearing property evaluation of the Lower Cambrian shale is still a hot spot of concern. According to previous works, this paper systematically summarizes the gas-bearing characteristics and controlling factors of the Lower Cambrian shales in southern China. The buried depth of Lower Cambrian shales mainly ranges from 3000 m to 6000 m, and the thickness of organic-rich shale intervals ( TOC > 2 % ) varies from 20 m to 300 m. The TOC content and EqVRo value are generally up to 2%-10% and 2.5%-6.0%, respectively. The gas content of the Lower Cambrian shales in the Weiyuan-Qianwei block of the Sichuan Basin and the western Hubei area generally exceeds 2 m3/t, and gas composition is dominated by CH4. In southeastern Chongqing, northwestern Hunan, and northern Guizhou areas, the gas content of the Lower Cambrian shales is generally <2 m3/t, and the N2 content is generally >60%. In the Lower Yangtze region, the Lower Cambrian shale reservoirs basically contain no gas. Higher maturity, lower porosity, and less-no organic pores are suggested to be responsible for low gas contents and/or the predominate of N2 in shale gas reservoirs. Strong tectonic deformation is an important factor leading to the massive gas loss from shale reservoirs, thus resulting in no gas or only a small amount of N2 in the Lower Cambrian shales. In a word, the Lower Cambrian shale gas plays with low maturity and relatively stable tectonic condition, especially deep-ultradeep zones, may be the favorable targets for shale gas exploration.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3