Effects of Borehole Arrangement on Methane Migration and Implications for High Efficiency Extraction in Intact and Tectonic Combined Coal Seams

Author:

Chang Chenxu12,Dong Jun123ORCID,Ju Wenqiang12

Affiliation:

1. College of Safety Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China

2. Jiangsu Key Laboratory of Urban and Industrial Safety, Nanjing Tech University, Nanjing, Jiangsu 211816, China

3. State Key Laboratory Cultivation Base for Gas Geology and Gas Control (Henan Polytechnic University), Jiaozuo, Henan 454000, China

Abstract

Gas extraction by bedding boreholes is a key means to realize safe mining of coal mine and protect the environment. The traditional bedding boreholes are usually constructed in the center of the coal seam, which may not obtain a high methane extraction rate because of the existence of tectonic coal sublayer with low permeability. In this paper, the gas migration characteristics of combined coal seams composed of tectonic and intact coal sublayers are investigated, and the efficient gas extraction method is further explored. The results indicate that only 2.676 kg/m3 of gas can be extracted under the traditional bedding borehole arrangement in 300 days. The tectonic coal sublayer with low permeability restricts the gas in the intact coal sublayers to flow to the extraction boreholes, which is the main reason for the low gas extraction rate. By arranging boreholes up and down alternately with a vertical spacing of 2.74 m, the maximum gas amount of 3.526 kg/m3 can be extracted, showing an increased rate of 31.8%. The optimal vertical spacing between adjacent boreholes (VSAB) raises with the relatively increasing thickness or decreasing permeability of the tectonic coal sublayer. The optimal VSAB has a linear relationship with the thickness ratio of the tectonic coal sublayer to the combined coal seams. The optimal VSAB can be obtained referring to the numerical relationship, and then, the extraction boreholes can be dilled to achieve efficient gas extraction of combined coal seams. In engineering, the dislocation arrangement of borehole can greatly improve the gas extraction efficiency and coal mine safety.

Funder

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3