Flexible Lévy-Based Models for Time Series of Count Data with Zero-Inflation, Overdispersion, and Heavy Tails

Author:

Kollie Confort1ORCID,Ngare Philip2,Malenje Bonface3

Affiliation:

1. Pan African University Institute for Basic Sciences, Technology and Innovation (PAUSTI), Nairobi, Kenya

2. School of Mathematics, University of Nairobi, Nairobi, Kenya

3. Jomo Kenyatta University of Agriculture and Technology, Department of Statistics and Actuarial Sciences, Juja, Kenya

Abstract

The explosion of time series count data with diverse characteristics and features in recent years has led to a proliferation of new analysis models and methods. Significant efforts have been devoted to achieving flexibility capable of handling complex dependence structures, capturing multiple distributional characteristics simultaneously, and addressing nonstationary patterns such as trends, seasonality, or change points. However, it remains a challenge when considering them in the context of long-range dependence. The Lévy-based modeling framework offers a promising tool to meet the requirements of modern data analysis. It enables the modeling of both short-range and long-range serial correlation structures by selecting the kernel set accordingly and accommodates various marginal distributions within the class of infinitely divisible laws. We propose an extension of the basic stationary framework to capture additional marginal properties, such as heavy-tailedness, in both short-term and long-term dependencies, as well as overdispersion and zero inflation in simultaneous modeling. Statistical inference is based on composite pairwise likelihood. The model’s flexibility is illustrated through applications to rainfall data in Guinea from 2008 to 2023, and the number of NSF funding awarded to academic institutions. The proposed model demonstrates remarkable flexibility and versatility, capable of simultaneously capturing overdispersion, zero inflation, and heavy-tailedness in count time series data.

Funder

Pan African University Institute for Basic Sciences, Technology, and Innovation

Publisher

Hindawi Limited

Subject

Statistics and Probability

Reference28 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3