Computer Vision with Error Estimation for Reduced Order Modeling of Macroscopic Mechanical Tests

Author:

Nguyen Franck1,Barhli Selim M.2,Muñoz Daniel Pino3,Ryckelynck David1ORCID

Affiliation:

1. Centre des Matériaux, Mines ParisTech PSL Research University, Evry 91003, France

2. Safran Analytics, rue des Jeunes Bois, Châteaufort, CS 80112, 78772 Magny les Hameaux Cedex, France

3. CEMEF, Mines ParisTech PSL Research University, CS 10207, 06904 Sophia Antipolis Cedex, France

Abstract

In this paper, computer vision enables recommending a reduced order model for fast stress prediction according to various possible loading environments. This approach is applied on a macroscopic part by using a digital image of a mechanical test. We propose a hybrid approach that simultaneously exploits a data-driven model and a physics-based model, in mechanics of materials. During a machine learning stage, a classification of possible reduced order models is obtained through a clustering of loading environments by using simulation data. The recognition of the suitable reduced order model is performed via a convolutional neural network (CNN) applied to a digital image of the mechanical test. The CNN recommend a convenient mechanical model available in a dictionary of reduced order models. The output of the convolutional neural network being a model, an error estimator, is proposed to assess the accuracy of this output. This article details simple algorithmic choices that allowed a realistic mechanical modeling via computer vision.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A local ROM for Rayleigh–Bénard bifurcation problems;Computer Methods in Applied Mechanics and Engineering;2024-05

2. Learning Projection-Based Reduced-Order Models;SpringerBriefs in Computer Science;2024

3. Informed machine learning methods for application in engineering: A review;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-04-17

4. Physics-informed cluster analysis and a priori efficiency criterion for the construction of local reduced-order bases;Journal of Computational Physics;2022-06

5. Uncertainty quantification for industrial numerical simulation using dictionaries of reduced order models;Mechanics & Industry;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3