Novel PGC-1α/ATF5 Axis Partly Activates UPRmt and Mediates Cardioprotective Role of Tetrahydrocurcumin in Pathological Cardiac Hypertrophy

Author:

Zhang Bing1,Tan Yanzhen1,Zhang Zhengbin2,Feng Pan3,Ding Wenyuan1,Wang Qian4,Liang Hongliang1,Duan Weixun1,Wang Xiaowu1,Yu Shiqiang1,Liu Jincheng1,Yi Dinghua1ORCID,Sun Yang5ORCID,Yi Wei1ORCID

Affiliation:

1. Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi’an, 710032, China

2. The 309 Hospital of PLA, 17 Heishanhu Street, Beijing 100091, China

3. Department of Cardiothoracic Surgery, 305 Hospital of PLA, A13 Wenjin Road, Beijing 100017, China

4. Department of Nutrition, The Fourth Military Medical University, 169 Changle West Road, Xi’an, 710032, China

5. Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi’an, 710032, China

Abstract

Mitochondrial unfolding protein response (UPRmt) effectively resists the pathological cardiac hypertrophy and improves the mitochondrial function. However, the specific activation mechanism and drugs that can effectively activate UPRmt in the cardiac muscle are yet to be elucidated. The aim of this study was to determine the regulation role of UPRmt on preventing pathological cardiac hypertrophy by tetrahydrocurcumin (THC) and explore its underlying molecular mechanism. Male C57BL/6J wild-type (WT) mice were divided into a control group and subjected to sham treatment for 4 weeks, and a test group which was subjected to transverse aortic constriction (TAC) surgery. Animals in the control and test group were orally administered THC (50 mg/kg) for 4 weeks after TAC procedure; an equivalent amount of saline was orally administered in the control sham-treated group and the TAC group. Subsequently, oxidative stress and UPRmt markers were assessed in these mice, and cardiac hypertrophy, fibrosis, and cardiac function were tested. Small interfering RNA (siRNA) targeting proliferator-activated receptor-gamma coactivator (PGC)-1α and activating transcription factor 5 (ATF5) were used to determine the UPRmt activation mechanism. THC supplement partly upregulated UPRmt effectors and inhibited TAC-induced oxidative stress compared with TAC-operated WT mice, thereby substantially attenuating contractile dysfunction, cardiac hypertrophy, and fibrosis. Furthermore, PGC-1α knockdown blunted the UPRmt activation and the cardioprotective role of THC. The interaction between PGC-1α and ATF5 was tested in neonatal rat cardiac myocytes under normal conditions. The results showed that PGC-1α was an upstream effector of ATF5 and partly activated UPRmt. In vitro, phenylephrine- (PE-) induced cardiomyocyte hypertrophy caused ATF5 upregulating rather than downregulating corresponding to the downregulation of PGC-1α. The PGC-1α/ATF5 axis mediated the UPRmt activation and stress-resistance role of THC in vitro. Collectively, the present study provides the first evidence that PGC-1 and ATF5 can form a signaling axis to partly activate UPRmt that mediates the cardioprotective role of THC in pathological cardiac hypertrophy.

Funder

Technological New Star Program of Shaanxi Province

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3