Single Nucleotide Polymorphism Detection Using Au-Decorated Single-Walled Carbon Nanotube Field Effect Transistors

Author:

Lee Keum-Ju1,So Hye-Mi1,Kim Byoung-Kye12,Kim Do Won3,Jang Jee-Hwan34,Kong Ki-Jeong1,Chang Hyunju1,Lee Jeong-O1

Affiliation:

1. NanoBio Fusion Research Center, Korea Research Institute of Chemical Technology, Daejeon 305-343, Republic of Korea

2. Regional Innovation Agency, Jeonbuk Technopark, Jeonju 561-844, Republic of Korea

3. Panagene Inc., Daejeon 305-510, Republic of Korea

4. Ucaretron Inc., Dongiltechno Building C, Anyang 431-716, Republic of Korea

Abstract

We demonstrate that Au-cluster-decorated single-walled carbon nanotubes (SWNTs) may be used to discriminate single nucleotide polymorphism (SNP). Nanoscale Au clusters were formed on the side walls of carbon nanotubes in a transistor geometry using electrochemical deposition. The effect of Au cluster decoration appeared as hole doping when electrical transport characteristics were examined. Thiolated single-stranded probe peptide nucleic acid (PNA) was successfully immobilized on Au clusters decorating single-walled carbon nanotube field-effect transistors (SWNT-FETs), resulting in a conductance decrease that could be explained by a decrease in Au work function upon adsorption of thiolated PNA. Although a target single-stranded DNA (ssDNA) with a single mismatch did not cause any change in electrical conductance, a clear decrease in conductance was observed with matched ssDNA, thereby showing the possibility of SNP (single nucleotide polymorphism) detection using Au-cluster-decorated SWNT-FETs. However, a power to discriminate SNP target is lost in high ionic environment. We can conclude that observed SNP discrimination in low ionic environment is due to the hampered binding of SNP target on nanoscale surfaces in low ionic conditions.

Funder

Korea Research Council for Industrial Science and Technology

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3