Universal Method for Constructing Fault-Tolerant Optical Routers Using RRW

Author:

Fadhel Meaad1ORCID,Huang Lei1,Gu Huaxi1ORCID

Affiliation:

1. State Key Laboratory of Integrated Service Network, Xidian University, Xi’an, China

Abstract

High-speed data transmission enabled by photonic network-on-chip (PNoC) has been regarded as a significant technology to overcome the power and bandwidth constraints of electrical network-on-Chip (ENoC). This has given rise to an exciting new research area, which has piqued the public’s attention. Current on-chip architectures cannot guarantee the reliability of PNoC, due to component failures or breakdowns occurring, mainly, in active components such as optical routers (ORs). When such faults manifest, the optical router will not function properly, and the whole network will ultimately collapse. Moreover, essential phenomena such as insertion loss, crosstalk noise, and optical signal-to-noise ratio (OSNR) must be considered to provide fault-tolerant PNoC architectures with low-power consumption. The main purpose of this manuscript is to improve the reliability of PNoCs without exposing the network to further blocking or contention by taking the effect of backup paths on signals sent over the default paths into consideration. Thus, we propose a universal method that can be applied to any optical router in order to increase the reliability by using a reliable ring waveguide (RRW) to provide backup paths for each transmitted signal within the same router, without the need to change the route of the signal within the network. Moreover, we proposed a simultaneous transmission probability analysis for optical routers to show the feasibility of this proposed method. This probability analyzes all the possible signals that can be transmitted at the same time within the default and the backup paths of the router. Our research work shows that the simultaneous transmission probability is improved by 10% to 46% compared to other fault-tolerant optical routers. Furthermore, the worst-case insertion loss of our scheme can be reduced by 46.34% compared to others. The worst-case crosstalk noise is also reduced by 24.55%, at least, for the default path and 15.7%, at least, for the backup path. Finally, in the network level, the OSNR is increased by an average of 68.5% for the default path and an average of 15.9% for the backup path, for different sizes of the network.

Funder

Youth Innovation Team of Shaanxi Universities

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3