Nanoscale Zero-Valent Iron Dispersed by Sodium Alginate Enables Highly Efficient Removal of Lead (Pb) from Aqueous Solution

Author:

Zheng Chunli1ORCID,Ren Jieling1ORCID,He Fei1ORCID,Yong Yingying1ORCID,Tu Yanhong2ORCID,Wang Zhenxing3ORCID

Affiliation:

1. Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China

2. Xingzhi College Zhejiang Normal University, Lanxi 321100, China

3. Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China

Abstract

Nanozero-valent iron (NZVI) shows great potential in the remediation of water pollution, but its application is limited by its instability and tendency to aggregate. To enhance the dispersibility and antioxidant properties of NZVI, we prepared composites (SN) by wrapping NZVI with sodium alginate (SA) for the removal of Pb(II) from water. Various characterization methods such as SEM-EDS, BET, XPS, and FT-IR were used to study the structure of the materials, and the adsorption properties of Pb(II) in the materials were analyzed using adsorption kinetics and adsorption isotherm experiments. The results showed that SN had a specific surface area of 47.05 m2/g, which was significantly higher than the 7.56 m2/g of NZVI, and the surface passivation was reduced. The maximum adsorption amount of SN on Pb(II) was obtained by fitting the adsorption isotherm model at 70.92 mg/g. After five cycles of adsorption, SN exhibited a removal rate of 95.11% for Pb(II). The mechanism of Pb(II) removal by SN involved the synergistic effect of electrostatic adsorption, redox reaction, ion exchange, and coprecipitation. Notably, even after 90 days of aging, the removal rate of Pb(II) by SN remained high at 95.39%, demonstrating good reactivity. These results indicated that SN is an effective adsorbent to remove Pb(II) contamination.

Funder

National Basic Research Program of China

Publisher

SAGE Publications

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3