Adverse Effects of Hydroalcoholic Extracts and the Major Components in the Stems of Impatiens balsamina L. on Caenorhabditis elegans

Author:

Jiang Hong-Fang12ORCID,Zhuang Zi-Heng3,Hou Bei-Wei2,Shi Bao-Jun2,Shu Cheng-Jie1,Chen Lei2,Shi Guo-Xin1ORCID,Zhang Wei-Ming12ORCID

Affiliation:

1. College of Life Science, Nanjing Normal University, Nanjing 210046, China

2. Nanjing Institute for Comprehensive Utilization of Wild Plant, Nanjing 210042, China

3. School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou 213264, China

Abstract

Impatiens balsamina L. (Balsaminaceae), an annual herb found throughout China, has been extensively used in traditional Chinese medicine (TCM). However, our knowledge regarding the adverse effects of I. balsamina in vivo is very limited. In this present study, the nematode Caenorhabditis elegans model was employed to fully assess the adverse effects of hydroalcoholic (EtOH 55%) extracts of I. balsamina stems (HAEIBS) in vivo. After exposure to 10 mg/mL HAEIBS, the major organism-level endpoints of C. elegans of percent survival, frequency of head thrash and body bends, and reproduction had decreased by 24%, 30%, and 25%, respectively. The lifespan of C. elegans was also greatly reduced after HAEIBS exposure compared to the controls. The active compounds in HAEIBS were separated using high speed countercurrent chromatograph (HSCCC) and characterized by high performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR). Two compounds, lawsone and 2-methoxy-1,4-naphthoquinone (MNQ), and their adverse effects were then more thoroughly detailed in this study. It was found that lawsone is the major toxin in HAEIBS with a higher toxicity than MNQ in terms of negative impact on C. elegans mortality, locomotion, reproduction, and lifespan. Our data also suggests that the C. elegans model may be useful for assessing the possible toxicity of other Chinese medicines, plant extracts, and/or compounds.

Funder

Science and Technology Support Program

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3