An Efficient Design of Adaptive Model Predictive Controller for Load Frequency Control in Hybrid Power System

Author:

Gulzar Muhammad Majid1ORCID,Sibtain Daud1ORCID,Ahmad Arslan2,Javed Imran3,Murawwat Sadia4,Rasool Imran1,Hayat Aamir1

Affiliation:

1. Department of Electrical Engineering, University of Central Punjab, Lahore, Pakistan

2. Otto von Guericke University Magdeburg, Magdeburg, Germany

3. Department of Electrical Engineering, University of Engineering and Technology Lahore, Narowal Campus, Narowal, Pakistan

4. Department of Electrical Engineering, Lahore College for Women University, Lahore, Pakistan

Abstract

The technology has proceeded so much that the power system should be substantial and explicit to give optimal results. Ever-increasing complexities of the power system and load disparity cause frequency fluctuations leading to efficiency degradation of the power system. In order to give a suitable real power output, the system entails an extremely perceptive control technique. Consequently, an advanced control method, that is, an adaptive model predictive controller (AMPC), is suggested for load frequency control (LFC) of the series power system which comprises photovoltaic (PV), wind, and thermal power. The suggested method is considered to enhance the power system execution as well as to decrease the oscillations due to a discrepancy in the system parameters and load disturbance under a multi-area power system network. The AMPC design verifies the constant frequency by maintaining a minimum steady state error under varying load conditions. The proposed control approach pledge that the steady-state error of frequencies and interchange of tie line powers is maintained in a given tolerance constraint. The effectiveness of the proposed controller is scrutinized by conventional controllers like genetic algorithm-tuned PI (GA-PI), firefly algorithm-tuned PI (FA-PI), and model predictive controller (MPC) to show the competence of the proposed method.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3