Affiliation:
1. School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
2. School of Science, Southwest University of Science and Technology, Mianyang 621010, China
Abstract
The target of the clustering analysis is to group a set of data points into several clusters based on the similarity or distance. The similarity or distance is usually a scalar used in numerous traditional clustering algorithms. Nevertheless, a vector, such as data gravitational force, contains more information than a scalar and can be applied in clustering analysis to promote clustering performance. Therefore, this paper proposes a three-stage hierarchical clustering approach called GHC, which takes advantage of the vector characteristic of data gravitational force inspired by the law of universal gravitation. In the first stage, a sparse gravitational graph is constructed based on the top k data gravitations between each data point and its neighbors in the local region. Then the sparse graph is partitioned into many subgraphs by the gravitational influence coefficient. In the last stage, the satisfactory clustering result is obtained by merging these subgraphs iteratively by using a new linkage criterion. To demonstrate the performance of GHC algorithm, the experiments on synthetic and real-world data sets are conducted, and the results show that the GHC algorithm achieves better performance than the other existing clustering algorithms.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献