An Effective Method for Hybrid CNT/GNP Dispersion and Its Effects on the Mechanical, Microstructural, Thermal, and Electrical Properties of Multifunctional Cementitious Composites

Author:

Abedi Mohammadmahdi12ORCID,Fangueiro Raul34ORCID,Correia Antonio Gomes12ORCID

Affiliation:

1. Department of Civil Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal

2. Institute for Sustainability and Innovation in Structural Engineering, University of Minho, Guimarães, Portugal

3. Department of Mechanical Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal

4. Center for Textile Science and Technology, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal

Abstract

This paper reports a study undertaken to achieve a compatible and affordable technique for the high-quality dispersion of carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) in an aqueous suspension to be used in multifunctional cementitious composites. In this research work, two noncovalent surfactants with different dispersion mechanisms (Pluronic F-127 (nonionic) and sodium dodecylbenzene sulfonate (SDBS) (ionic)) were used. We evaluated the influences of various factors on the dispersion quality, such as the surfactant concentration, sonication time, and temperature using UV-visible spectroscopy, optical microscopic image analysis, zeta potentials, and particle size measurement. The effect of tributyl phosphate (TBP) used as an antifoam agent was also evaluated. The optimum suspensions of each surfactant were used to produce cementitious composites, and their mechanical, microstructural, electrical, and thermal behaviors were assessed and analyzed. The best dispersed CNT+GNP aqueous suspensions using Pluronic and SDBS were obtained for concentrations of 10% and 5%, respectively, with 3 hours of sonication, at 40°C, with TBP used for both surfactants. The results also demonstrate that cementitious composites reinforced with CNT+GNP/Pluronic showed better mechanical performance and microstructural characteristics due to the higher quality of the dispersion and the increasing hydration rate. Composites prepared with an SDBS suspension demonstrated lower electrical and thermal conductivities compared to those of the Pluronic suspension due to changes in the intrinsic properties of CNTs and GNPs by the SDBS dispersion mechanism.

Funder

European Commission

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3