Enhancement of Photoelectrochemical Performance of Ag@ZnO Nanowires: Experiment and Mechanism

Author:

Cai Yu1,Yao Chengbao1ORCID,Yuan Jie2

Affiliation:

1. Key Laboratory of Photonic and Electric Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025 Heilongjiang, China

2. Harbin Medical University, Daqing Campus, Daqing, 163319 Heilongjiang, China

Abstract

This paper focuses on the enhancement of photoelectrochemical (PEC) performance of uniform silver nanoparticles-decorated ZnO (Ag@ZnO) nanowires, which have been synthesized by two-step chemical vapor deposition to prepare ZnO nanowires then magnetron sputtering method to deposit Ag nanoparticles. Moreover, we analyzed the mechanisms of the PEC behavior of the Ag@ZnO nanowires. The PEC characteristics show that the current density of Ag@ZnO nanowires increased comparing to that of unmodified ZnO nanowires. The optimized content of the Ag-decorated ZnO photoelectrode is up to the maximum photocurrent density of 24.8 μAcm-2 at 1 V vs. Ag/AgCl, which was almost four times than that of the unmodified ZnO photoelectrode. Based on the surface plasmon resonance (SPR), effect of Ag nanoparticles was enhanced PEC performance of the Ag@ZnO nanowires. Because SPR effect of Ag nanoparticles extended the light absorption and enhanced the separation efficiency of the photogenerated electron-hole pairs. The remarkable PEC properties offer metals-semiconductor compound nanostructures materials as a promising electron source for high current density applications.

Funder

University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3