The Effect of Starch and Magnetite on the Physicochemical Properties of Polyurethane Composites for Hyperthermia Treatment

Author:

Paprota Natalia1,Szatkowski Piotr1ORCID,Szlachta Monika1,Piekarczyk Wojciech1ORCID,Pielichowska Kinga1ORCID

Affiliation:

1. AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, Al. Mickiewicza 30, 30-059 Kraków, Poland

Abstract

In this study, modified polyurethanes (PUs) with starch and magnetite were synthesized in the form of scaffolds for potential applications in orthopedics. Polyurethanes were synthesized using a one-step method. PU synthesis was carried out using poly(ε-caprolactone) 2000 as soft segments and 4,4 -methylenediphenyl diisocyanate (MDI). Various molar ratios of starch and 1,5-pentanediol (PDO) as crosslinker/chain extender were applied, and the effects of incorporating different amounts of magnetite, as well as the role of PDO to starch ratio, were studied. The use of the additive in the form of magnetic particles was to feature the polyurethane materials for use in hyperthermia. The prepared polyurethanes were investigated using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetry (TG), and dynamic mechanical analysis (DMA) methods. Scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDX) analysis and preliminary bioactivity assessment were also performed. The addition of magnetic particles did not cause significant changes in the properties of the obtained materials compared to starch. The tested materials have the potential to be used to fill or replace bone defects in orthopedics, where they can undergo hyperthermia treatment.

Funder

EU Project

Publisher

Hindawi Limited

Subject

Polymers and Plastics,Organic Chemistry,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Natural Renewable Polymers Part I: Polysaccharides;Reference Module in Chemistry, Molecular Sciences and Chemical Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3