Effects of Challenging Weather and Illumination on Learning-Based License Plate Detection in Noncontrolled Environments

Author:

Rio-Alvarez A.1ORCID,de Andres-Suarez J.1,Gonzalez-Rodriguez M.1,Fernandez-Lanvin D.1,López Pérez B.1

Affiliation:

1. Faculty of Computer Science, University of Oviedo, Oviedo, Spain

Abstract

License Plate Detection (LPD) is one of the most important steps of an Automatic License Plate Recognition (ALPR) system because it is the seed of the entire recognition process. In indoor controlled environments, there are many effective methods for detecting license plates. However, outdoors LPD is still a challenge due to the large number of factors that may affect the process and the results obtained. It is an evidence that a complete training set of images including as many as possible license plates angles and sizes improves the performance of every classifier. On this line of work, numerous training sets contain images taken under different weather conditions. However, no studies tested the differences in the effectiveness of different descriptors for these different conditions. In this paper, various classifiers were trained with features extracted from a set of rainfall images using different kinds of texture-based descriptors. The accuracy of these specific trained classifiers over a test set of rainfall images was compared with the accuracy of the same descriptor-classifier pair trained with features extracted from an ideal conditions images set. In the same way, we repeat the experiment with images affected by challenging illumination. The research concludes, on one hand, that including images affected by rain, snow, or fog in the training sets does not improve the accuracy of the classifier detecting license plates over images affected by these weather conditions. Classifiers trained with ideal conditions images improve the accuracy of license plate detection in images affected by rainfalls up to 19% depending on the kind of extracted features. However, on the other hand, results evidence that including images affected by low illumination regardless of the kind of the selected feature increases the accuracy of the classifier up to 29%.

Funder

European Regional Development Fund

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TAENet: transencoder-based all-in-one image enhancement with depth awareness;Applied Intelligence;2024-06-08

2. Combining RFID and Image-Based Vehicle Identification Data to Detect Illegal Vehicles;2024 ELEKTRO (ELEKTRO);2024-05-20

3. Analysis and implementation of vehicle license plates detection and recognition tool;2023 12th International Conference On Software Process Improvement (CIMPS);2023-10-18

4. Industry Internet of Things based Intelligent Driver Monitoring System;2023 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS);2023-03-23

5. An Evaluation of Various Pre-trained Optical Character Recognition Models for Complex License Plates;Proceedings of the Multimedia University Engineering Conference (MECON 2022);2022-12-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3