Affiliation:
1. Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
2. Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
Abstract
Bovine anaplasmosis is an infectious disease of cattle caused by the obligate intercellular bacterium, Anaplasma marginale, and it primarily occurs in tropical and subtropical regions of the world. In this study, an age-structured deterministic model for the transmission dynamics of bovine anaplasmosis was developed; the model incorporates symptomatic and asymptomatic cattle classes. Sensitivity analysis was carried out to determine the parameters with the highest impact on the reproduction number. The dominant parameters were the bovine natural and disease-induced death rates, disease progression rate in adult cattle, the mechanical devices transmission probability and contact rates, the pathogen contamination, and decay rates on the mechanical devices. The result of the sensitivity analysis suggests that control strategies to effectively prevent/control the spread of bovine anaplasmosis should focus on these parameters according to their positive or negative effect as seen from the sensitivity index. Following the results of the sensitivity analysis, three control strategies were investigated, namely, bovine-culling, safety-control, and universal. In addition to these strategies, three effectiveness levels (low, medium, and high) were considered for each control strategy using the cumulative number of newly infected cases in both juvenile and adult cattle as measure function. The universal strategy (comprising both cattle-culling and safety-control strategies) is only marginally better at reducing the number of infected cattle compare to the safety-control strategy. This result suggests that efforts should be aimed at improving and maintaining good hygiene practices; furthermore, the added benefit of culling infected cows is only minimal and not cost-efficient.
Funder
Strategic Environmental Research and Development Program
Subject
Virology,Infectious Diseases,Microbiology (medical),Microbiology,Parasitology
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献