Evolutionary Model and Simulation Research of Collaborative Innovation Network: A Case Study of Artificial Intelligence Industry

Author:

Wei Fang1ORCID,Sheng Dai1,Lili Wang1

Affiliation:

1. School of Management, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

Based on integrating the fundamental attribute and the unique property of the collaborative innovation network, this paper establishes a collaborative innovation network model of Artificial Intelligence industry through depicting external stimulus conversion progresses and behaviors of network heterogeneous agents. Heterogeneous agents are the network elements of the model which regards the stimulus response as the evolutionary mechanism. Tencent is one of the largest Internet integrated service providers and one of the Internet companies with the largest number of service users in China, which has also set its sights on the development of the AI industry. Taking Tencent’s patent cooperation network in the field of Artificial Intelligence as an example and using system simulation method, we analyze the evolutionary law of the collaborative innovation network topology structure, the coupling evolution phenomenon of the knowledge and the network topology structure, distinct roles that agents play in the network, and relationship between the agents’ openness and the knowledge flow efficiency. We find the phenomenon of small world emergence more than once through the evolution of collaborative innovation network, whose degrees and reasons are also distinctive. There exists coupling evolution between the technological knowledge and the network structure. The collaborative innovation network is always oriented towards competitive industries. The agents’ openness has an essential influence on the lifting range of the technological knowledge. Strengthening the main position of enterprises in AI technological innovation and enhancing the degree of openness among heterogeneous agents are a powerful guarantee for improving the performance of collaborative innovation.

Funder

National Social Science Foundation of China

Publisher

Hindawi Limited

Subject

Modelling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3