Target-Induced Aggregation of Gold Nanoparticles for Colorimetric Detection of Bisphenol A

Author:

Hwang Sung Hyun1,Jeong Sehan1,Choi Hyung Joo1,Eun Hyunmin1,Jo Min Geun1,Kwon Woo Young1,Kim Seokjoon1,Kim Yonghwan2,Lee Miran2,Park Ki Soo1ORCID

Affiliation:

1. Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea

2. Daisung Green Tech, Seongnam, Gyeonggi-do 13216, Republic of Korea

Abstract

Bisphenol A (BPA) is used in a wide variety of consumer products owing to its beneficial properties of optical clarity, shatter resistance, and heat resistance. However, leached BPA has been shown to disturb the endocrine system and could cause cancer even at low concentrations, which has led to public concern. To reduce the toxic effects caused by BPA, it is important to monitor the BPA levels and its presence in products in a simple, rapid, and on-site manner. Here, we propose a new colorimetric strategy for the simple and rapid detection of BPA employing a DNA aptamer, a cationic surfactant, and gold nanoparticles (AuNPs). Using the developed system, the presence of BPA can be successfully determined based simply on a visually detectable color change from red to blue, triggered by aggregate formation of the AuNPs, which can be monitored even with the naked eye. Under the optimized conditions, this system could detect BPA with excellent selectivity and sensitivity, and its high performance was validated in the receipt obtained from local market and BPA-spiked tap water samples, ensuring its practical applicability. Moreover, the limit of the detection of the system was determined to be 97 nM, which is below the current tolerable daily intake level, demonstrating its suitability for toxicity assessment and on-site quality control in a more economical manner when compared with conventional methods.

Funder

Ministry of Environment

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3